

Πρώιμη αγγειακή γήρανση στην υπέρταση: διάγνωση και αντιμετώπιση

Χαράλαμπος Βλαχόπουλος

1^η Καρδιολογική Κλινική Πανεπιστημίου Αθηνών Ιπποκράτειο Γ.Ν.Α.

Οι προβλεπόμενες αρτηριακές αλλαγές με βάση την ηλικία και τους παράγοντες κινδύνου ...

...δεν αντιστοιχούν πάντα στη βιολογική ηλικία !!!

Βιοδείκτες αγγειακής ηλικίας

 \rightarrow

Functional changes

Aortic stiffness Central Pressures Endothelial function

Structural changes

Intima-media thickness

Criteria of a Biomarker

A theoretical basis

High reproducibility

Ease of use

Incremental value

Ability to monitor and guide therapy

R Vasan 2006

Βιοδείκτες αγγειακής ηλικίας

Functional changes

Aortic stiffness Central Pressures Endothelial function

Structural changes

Intima-media thickness

Aortic stiffness

A theoretical basis

High reproducibility

Ease of use

Incremental value

Aortic stiffness

European Heart Journal Advance Access published September 25, 2006

European Heart Journal doi:10.1093/eurheartj/ehl254 Special article

Expert consensus document on arterial stiffness: methodological issues and clinical applications

Stephane Laurent^{1*}, John Cockcroft², Luc Van Bortel³, Pierre Boutouyrie¹, Cristina Giannattasio⁴, Daniel Hayoz⁵, Bruno Pannier⁶, Charalambos Vlachopoulos⁷, Ian Wilkinson⁸, and Harry Struijker-Boudier⁹ on behalf of the European Network for Non-invasive Investigation of Large Arteries

Incremental value

Theoretical basis

Propagation along

the arterial tree

Left ventricular ejection generates a pulse wave which will propagate along the arterial walls at certain speed

Blood = incompressible fluid Artery = elastic conduit

The propagation velocity is determined by:

The elastic and geometric properties of the arterial wall The characteristics of the arterial wall structure

Aortic stiffness

A theoretical basis

High reproducibility

Ease of use

Incremental value

Aortic stiffness - Evaluation

Pulse Wave Velocity

Complior

Carotid-Femoral (aortic) Pulse Wave Velocity measurement using the foot-to-foot velocity method

PWV = d (m) / Δt (sec)

- Easy to perform – learning curve
- Reproducible

*

Not expensive

Aortic stiffness

A theoretical basis

High reproducibility

Ease of use

Incremental value

Longitudinal studies reporting the independent predictive value of PWV

First author, yr	Events	Type of patients
Willum-Hansen T, 2006	CV events, CV mortality	General population
Mattace –Rasso FU, 2006	CV events	General population
Shokawa T, 2005	CV mortality	General population
Boutouyrie P, 2002	Coronary events	Essential Hypertension
Laurent S, 2001	All cause and CV mortality	Essential Hypertension
Laurent S, 2003	Fatal strokes	Essential Hypertension
Sutton-Tyrrell K, 2005	CV events	Elderly subjects
Meaume S, 2001	CV mortality	Elderly subjects
Blacher J, 1999	All cause and CV mortality	ESRD
Shoji T, 2001	CV mortality	ESRD
Cruickshank K, 2002	All cause and CV mortality	DM II

Aortic stiffness - Prognostic role of PWV

Parameters	OR	Lower 95% Cl	Higher 95% Cl	Р
Moo CHI ² =97			······································	
Previous o. ves/no	8.33	4.33	16.02	< 0.000
Age, 10 y	1.69	1.25	2.30	<0.001
PWV, 5 m/s	1.51	1.08	2.11	0.03
Model 2 CHI ² =95				
Previous CVD, yes/no	8.09	4.19	15.61	< 0.000
Age, 10 y	1.72	1.27	2.34	< 0.000
PP, 10 mm Hg	1.19	0.99	1.42	0.06
Model 3 CHI ² =96				
Previous CVD, yes/no	8.32	4.33	16.02	<0.0001
Age, 10 y	1.82	1.36	2.45	<0.0001
SBP, 10 mm Hg	1.15	1.02	1.30	0.03

Diabetes (yes/no), included in each of the 3 models, was not significantly associated with cardiovascular mortality.

Aortic stiffness

A theoretical basis

High reproducibility

Ease of use

Incremental value

Prognostic role of PWV – changes with therapy

Despite similar reduction in MBP, only those who survived reduced aortic pulse wave velocity

Guerin AP, et al. Circulation 2001;103:987-992

Arterial stiffness: Where do we stand today?

European Heart Journal doi:10.1093/eurheartj/ehm236 **ESC and ESH Guidelines**

2007 Guidelines for the Management of Arterial Hypertension

The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)

Recommended tests

- Echocardiogram
- Carotid ultrasound
- Quantitative proteinuria (if dipstick test positive)
- Ankle-brachial BP Index
- Fundoscopy
- Glucose tolerance test (if fasting plasma glucose >5.6 mmol/L (100 mg/dL)
- Home and 24 h ambulatory BP monitoring.

Pulse wave velocity measurement (where available)

 Table 4
 Availability, prognostic value and cost of some markers

 of organ damage (scored from 0 to 4 pluses)

Markers	CV predictive value	Availability	Cost
Electrocardiography Echocardiography Carotid Intima-Media	++ +++ +++	++++ +++ +++	+ ++ ++
Arterial stiffness (Pulse wave velocity)	+++	+	++
Ankle-Brachial Index	++	++	+
Coronary calcium content	+	+	++++
Cardiac/Vascular tissue composition	?	+	++
Circulatory collagen markers	?	+	++
Endothelial dysfunction	++	+	+++
Cerebral lacunae/White matter lesions	?	++	++++
Est. Glomerular Filtration Rate or Creatinine Clearance	+++	++++	+
Microalbuminuria	+++	++++	+

Βιοδείκτες αγγειακής ηλικίας

 \rightarrow

Functional changes

Aortic stiffness Central Pressures Endothelial function

Structural changes

Intima-media thickness

Central Pressures and Indices

Central Blood Pressure Measurements and Antihypertensive Therapy A Consensus Document

Enrico Agabiti-Rosei, Giuseppe Mancia, Michael F. O'Rourke, Mary J. Roman, Michel E. Safar, Harold Smulyan, Ji-Guang Wang, Ian B. Wilkinson, Bryan Williams, Charalambos Vlachopoulos

Central Pressures and Indices

A theoretical basis

High reproducibility

Ease of use

Incremental value

CBPs: theoretical basis

> amplification

peripheral BP may overestimate central SP and PP, especially in young subjects

CBPs: theoretical basis

> Aortic systolic BP=LV systolic P

reflects LV afterload

> Aortic diastolic BP throughout diastole

determines coronary filling

Elastic-type arteries (aorta-carotids) degenerate with aging and hypertension

Central BPs are physiologically more relevant than peripheral BPs to the pathogenesis of CV disease

Central Pressures and Indices

A theoretical basis

High reproducibility

Ease of use

Incremental value

Central Pressure Measurement

Central Pressures and Indices

A theoretical basis

High reproducibility

Ease of use

Incremental value

CBPs/indices as predictors of events

Longitudinal studies

First author	Year, country	Population	Design	Parameter	End-point
Nakayama *	2000, Japan	CAD-PTCA	Longitudinal (3-month FU)	Aortic fractional PP	restenosis
Lu *	2001, China	CAD-PTCA	Longitudinal (6-month FU)	Aortic PP	restenosis
London†	2001, France	ESRD	Longitudinal (52-month FU)	Carotid AIx	CV mortality
Safar †	2002, France	ESRD	Longitudinal (52-month FU)	Carotid PP, PP amplification	All-cause and CV mortality
Ueda*	2004, Japan	CAD-PTCA	Longitudinal (6-month FU)	Aortic AIx	restenosis
Chirinos *†	2005, USA	CAD	Longitudinal (3.2-year FU)	Aortic AP	CV mortality and events
Weber †	2005, Austria	CAD-PTCA	Longitudinal (2-year FU)	Aortic AIx	CV mortality and events
Dart	2006, Australia	Elderly female hypertensives	Longitudinal (4.1-year FU)	Carotid AIx, Brachial BP	CV mortality and events
Williams †	2006 CAFE study	Hypertensives	Longitudinal (up to 4-year FU)	Aortic PP	CV mortality and events during treatment
Roman †	2005 and 2007, USA	High-risk pts	Longitudinal (4.8-year FU)	Aortic PP	CV mortality and events
Jankowski *†	2008, Poland	Pts undergoing angiography	Longitudinal (4.5-year FU)	Pulsatility	CV mortality and events

* Measured invasively

Central Pressures and Indices

A theoretical basis

High reproducibility

Ease of use

Incremental value

CBPs: Ability to monitor and guide therapy

CAFÉ Study

 BP-lowering drugs can have substantially different effects on central aortic pressures and hemodynamics despite a similar impact on brachial BP

- Central aortic pressure is an independent determinant of outcome
- Central aortic pressure may comprise a treatment target

Williams B, et al. Circulation 2006

CBs: Implementation in clinical practice

Need for reference values/cut-offs

Published:

ACCT 2005

EPOGH 2006

Ongoing:

European Network on Large Artery Investigation NIA Framingham

CBPs: Where do we stand today?

European Heart Journal doi:10.1093/eurheartj/ehm236 ESC and ESH Guidelines

2007 Guidelines for the Management of Arterial Hypertension

The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)

3.1.7 Central blood pressure

Due to the variable superimposition of incoming and reflected pressure waves along the arterial tree, aortic systolic and pulse pressure (i.e. the pressure exerted at the level of the heart, brain and kidney) may be different from the conventionally measured brachial pressure.¹⁶² Furthermore, the claim has long been made that peripheral and central systolic and pulse pressures may be differently affected by antihypertensive drugs.¹⁶³ The need for invasive measurement of central blood pressure has confined this issue to research. However, recently a method has been described to non-invasively estimate aortic blood pressure by calculating the 'augmentation index' from the pulse wave pressure contour recorded from a peripheral artery.^{164,165} Use of this method has confirmed that the effects of antihypertensive drugs on central systolic and pulse pressure do not invariably reflect those seen at the brachial artery level.^{166,167} Furthermore, the results obtained in a large substudy performed within a randomized trial have shown that central pulse pressure as assessed from the 'augmentation index' is significantly related to cardiovascular events.¹⁶⁶ However, the prognostic role of central as opposed to peripheral blood pressure needs to be further confirmed in more large-scale observational and interventional studies.

" Though a wider use of PWV and AIx measurements may add further precision to the assessment of arterial damage, the availability of these techniques is largely limited to research centres."

CBPs: Where do we stand today?

Central Blood Pressure Measurements and Antihypertensive Therapy A Consensus Document

Enrico Agabiti-Rosei, Giuseppe Mancia, Michael F. O'Rourke, Mary J. Roman, Michel E. Safar, Harold Smulyan, Ji-Guang Wang, Ian B. Wilkinson, Bryan Williams, Charalambos Vlachopoulos

Hypertension American Heart July 2007 Learn and Live...

is desirable. Inclusion of a parameter in patient assessment and management should serve various purposes, such as advancement of science, physician education, and practicality of use in a range of settings, whereas cost should also be taken into consideration. Assessment of central pressures meets these criteria to a varying degree at present. Definition of terms such as central and peripheral BP, arterial stiffness, wave reflections, and systolic BP and PP amplification should be readily available to both clinicians and researchers and introduced in the guidelines on hypertension and cardiovascular risk. Although brachial BP remains our point of reference, there is a definite sense that efforts to investigate

Βιοδείκτες αγγειακής ηλικίας

 \rightarrow

Functional changes

Aortic stiffness Central Pressures Endothelial function

Structural changes

Intima-media thickness

Flow-mediated Dilatation

A theoretical basis

High reproducibility

Ease of use

Incremental value

FMD: theoretical basis

ENDOTHELIUM

Atherosclerosis timeline

Flow-mediated Dilatation

A theoretical basis

High reproducibility

Ease of use

Incremental value

Post-ischemic diameter (60th sec)-resting diameter

FMD (%) = 100% x

resting diameter

Corretti M, et al. JACC 2002

FMD: reproducibility

Highly operator dependent

Though not reproducible as biochemical biomarkers, has an acceptable coefficient of variation ≈ 20%

Anderson T. Circulation 2007

Flow-mediated Dilatation

A theoretical basis

High reproducibility

Ease of use

Incremental value

FMD: ease of use

Training	Scientific Rationale and Ph	ysiology of FMD
	Basic knowledge of ultrasound equipment, two-dimensional and Doppler analysis Demonstrate technical tips and pitfalls Ergonomic issues Qualification criteria Training period with close supervision Periodic review of scan performance Minimum number of studies:	Qualification criteria Training period with close supervision and feedback Formal observer-specific reproducibility assessment Minimum number of studies: At least 100 supervised scans prior to scanning independently All observers from a given study measure 100 studies together prior to reading independently
Reproducibility	At least 100 supervised scans prior to scanning independently At least 100 scans per year to maintain competency Image variability: In single-site study, each sonographer scans the same participants to assess for systematic differences	At least 100 scans per year to maintain competency Multisite studies should have core reading laboratory, intra- and interobserver variability, temporal variability

An art form in itself!

The learning curve typically requires several months, depends on the technical skill of the individual, and the frequency with which the technique is performed

Corretti et al. JACC 2002

Flow-mediated Dilatation

A theoretical basis

High reproducibility

Ease of use

Incremental value

FMD as a predictor of events

Longitudinal studies

First author	Year	Population	Follow Up	End-point
Neunteufl	2000	Chest pain (73 pts)	5 years	Death, CHD events
Gocke	2002	Vascular surgery (187 pts)	1 month	CHD events, stroke
Modena	2002	Hypertensive, postmenopausal women (400 pts)	67 months	Non-fatal CV events
Gocke	2003	Vascular surgery (199 pts)	1.2 years	CHD evens, stroke
Brevetti	2003	PAD (131 pts)	23 months	CHD, CV and peripheral vascular events
Chan	2003	CHD (152 pts)	34 months	CHD, CV and peripheral vascular events
Fathi	2004	High risk of CHD (444 pts)	24 months	CHD events, stroke
Frick	2005	Chest pain (398 men)	39 months	CHD events
Meyer	2005	CHF, UNOS status 2(75 pts)	up to 3 years	Conversion to UNOS status 1, or death
Katz	2005	CHF, NYHA II-III (149 pts)	28 month	Death, urgent cardiac transplantation
Yeboah	2007	Older pts (2792 pts)	5 years	CV events

FMD: incremental predictive value

FMD adds very little (\approx 1%) to the prognostic accuracy in older patients

Yeboah et al. Circulation 2007

Subjects with high CVD risk have stiff arteries. Stiff arteries don't dilate

Thus, in high risk patients FMD may not reflect endothelial dysfunction completely

Flow-mediated Dilatation

A theoretical basis

High reproducibility

Ease of use

Incremental value

FMD: ability to monitor and guide therapy

Limited data on the effect of therapy (based on events) Modena et al. JACC 2002

□ Allows the study of interventions over a period of *months*, not necessarily years

More rapid evaluation of the novel therapies

FMD: Where do we stand today?

European Heart Journal doi:10.1093/eurheartj/ehm236 ESC and ESH Guidelines

2007 Guidelines for the Management of Arterial Hypertension

The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)

"Assessment of endothelial function *cannot* be advocated as currently useful in the clinical evaluation of the hypertensive patient."

Βιοδείκτες αγγειακής ηλικίας

 \rightarrow

Functional changes

Aortic stiffness Central Pressures Endothelial function

Structural changes

Intima-media thickness

Intima-Media Thickness

A theoretical basis

High reproducibility

Ease of use

Incremental value

IMT: theoretical basis

IMT: theoretical basis

□ Male gender, age increase IMT values (men>women, 0.6%/year)

Increased IMT due to:

 Intima thickening (atherosclerosis, age-dependent fibromuscular hyperplasia)

Media thickening (smooth muscle - hypertension, atherosclerosis)

Intima-Media Thickness

A theoretical basis

High reproducibility

Ease of use

Incremental value

IMT: reproducibility

- Acceptable reproducibility
- Acceptable operator dependency
- Variability is less for the CCA than for the ICA

Overall, a reliable and reproducible method for use in population studies

Intima-Media Thickness

A theoretical basis

High reproducibility

Ease of use

Incremental value

IMT: ease of use

Medium level of difficulty to master

Has a moderate learning curve

Methodological Considerations

Where should we measure ? (left, right, both? far vs. near? CCA, bulb, ICA?)
How should we measure? (short- or long-axis)
Mean IMT or Mean Maximum IMT ?
Should we include plaques in measurements ?

Intima-Media Thickness

A theoretical basis

High reproducibility

Ease of use

Incremental value

IMT: Longitudinal studies

First author	Year	Population	Follow Up	End-point
Salonen	1993	1,257 middle-aged eastern Finnish men	1 month to 2.5 years	Fatal and nonfatal MI
Chambless	1997	12,841 subjects (45-64 y)	4-7 years	Fatal and nonfatal CHD events
O'Leary	1999	4,476 subjects (>65 y)	6.2 years	MI, stroke, combined end point (MI or stroke)
Iglesias del Sol	2002	2,073 subjects (>55 y)	4.6 years	Fatal and nonfatal MI
Lacroix	2003	123 PCI patients	0.9 years	Worsnening or reccurence of cardiac symptoms
Aboyans	2005	609 CABG patients	3.5 years	MI, stroke, CV death, CABG, PAD
Rosvall	2005	5,163 subjects (58 y)	7 years	Fatal and nonfatal stroke
Lorenz	2006	5,056 subjects (19-90 y)	4.2 years	MI, stroke, combined end point (MI, stroke, death)

Intima-Media Thickness

A theoretical basis

High reproducibility

Ease of use

Incremental value

IMT: ability to monitor and guide therapy

Meta-analysis of 4 trials, 3619 hypertensives

CCBs reduced IMT (by 5 μ m/year) more than diuretics, β blockers, ACEIs for the same reduction in BP

Wang et al. Stroke 2006

IMT: Where do we stand today?

European Heart Journal doi:10.1093/eurheartj/ehm236 **ESC and ESH Guidelines**

2007 Guidelines for the Management of Arterial Hypertension

The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)

"U/S scanning of carotid arteries is recommended when detection of vascular hypertrophy or asymptomatic atherosclerosis is deemed useful."

Recommended tests

- Echocardiogram
- Carotid ultrasound
- Quantitative proteinuria (if dipstick test positive)
- Ankle-brachial BP Index
- Fundoscopy
- Glucose tolerance test (if fasting plasma glucose >5.6 mmol/L (100 mg/dL)
- Home and 24 h ambulatory BP monitoring
- Pulse wave velocity measurement (where available)

 Table 4
 Availability, prognostic value and cost of some markers of organ damage (scored from 0 to 4 pluses)

Markers	CV predictive value	Availability	Cost
Electrocardiography	++	++++	+
Echocardiography	+++	+++	++
Carotid Intima-Media Thickness	+++	+++	++
Arterial stiffness (Pulse wave velocity)	+++	+	++
Ankle-Brachial index	++	++	+
Coronary calcium content	+	+	++++
Cardiac/Vascular tissue composition	?	+	++
Circulatory collagen markers	?	+	++
Endothelial dysfunction	++	+	+++
Cerebral lacunae/White matter lesions	?	++	++++
Est. Glomerular Filtration Rate or Creatinine Clearance	+++	++++	+
Microalbuminuria	+++	++++	+

PWV, CBPs, FMD, IMT: and the winner is...

"I don't get it. If he's no faster than me, how come he always beats me?"

PWV, CBPs, FMD, IMT: and the winner is...

PWV and CPBs integrate the overall status of the arterial tree and represent the load to the heart

CBPs and FMD can detect *early* changes

□ IMT, PWV and CBPs can detect the *cumulative (late)* effects

Provide complementary information

Biomarkers of Arterial Aging and Treatment ???

Biomarkers of Arterial Aging and Treatment

Table 2

Pharmacological treatment associated with a reduction in arterial stiffness (modified from [2])

Antihypertensive treatment ACE inhibitors AT1 blockers Aldosterone blockers Calcium channel blockers Diuretics β-Blockers	
<i>Treatment of congestive heart failure</i> ACE inhibitors Nitrates	
<i>NO donors</i> Nitrates Sinitrodil	
Phosphodiesterase type-5 inhibitors Sildenafil	
<i>Hypolipidemic agents</i> Statins Ezetimibe	
Anti-inflammatory drugs TNFα antagonists	
Antidiabetic agents Thiazolidinediones	
AGE breakers Alagebrium (ALT-711)	

Vlachopoulos C et al

Wilkinson I

	Aortic pulse wave velocity	Augmentation index
ACE inhibitors	Ļ	$\downarrow\downarrow$
Angiotensin receptor blockers	Ļ	$\downarrow\downarrow$
β-Blockers	$\downarrow\downarrow$	\uparrow
Calcium channel blockers	↓	$\downarrow\downarrow$
Thiazide diuretics	\leftrightarrow	\downarrow
Nitrates	\leftrightarrow	$\downarrow\downarrow\downarrow\downarrow$
PD5 inhibitors	↓	Ţ

Biomarkers of Arterial Aging and Treatment STIFFNESS

ocity

mmHG

Guerin AP, et al. *Circulation* 2001;103:987-992

Survivors

	(Jan 1)	(##m)	(µm/y, 95	% Cls)	
Old:New	Old:New	Old:New			
441:442	1170:1170	50:40			
191:186	908:902	16:15	-	-	
164:160	660:668	5:-1			
1012:1023	1162:1159	15:13			
1808:1811 X ² =2.1, P=0.55			0	−5 (−9 to −1) P=0.007	
40:42	592:575	-52:-32 -			
28:22	750:770	160:100 ←			*
127:127	1220:1220	10:-2			
126:128	1210:1200	-2:-2	+		
321:319 X ² =4.8, P=0.19			\$	−1 (−5 to 2) P=0.52	
111:114	821:833	-37:-38	-	_	
39:41	1430:1390	-60:-50			
2279:2285 x²=10.4, <i>P</i>=0.32			¢	-3 (-5 to -0.3) P=0.03	
		ī ī			
	441:442 191:186 164:160 1012:1023 1808:1811 x²=2.1, P=0.55 40:42 28:22 127:127 126:128 321:319 x²=4.8, P=0.19 111:114 39:41 2279:2285 x²=10.4, P=0.32	$\begin{array}{cccc} 441:442 & 1170:1170 \\ 191:186 & 908:902 \\ 164:160 & 660:668 \\ 1012:1023 & 1162:1159 \\ 1808:1811 \\ \chi^2=2.1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	441:442 1170:1170 50:40 191:186 908:902 16:15 164:160 660:668 5:-1 1012:1023 1162:1159 15:13 $\chi^2=2.1, P=0.55$ 40:42 592:575 -52:-32 28:22 750:770 160:100 ← 127:127 1220:1220 10:-2 126:128 1210:1200 -2:-2 $\chi^2=4.8, P=0.19$ 111:114 821:833 -37:-38 39:41 1430:1390 -60:-50 $\chi^2=10.4, P=0.32$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Favors New Drugs

Wang et al. Stroke 2006

Favors Old Drugs

Non-survivors

Central Pressures

CAFÉ Study

CBPs, FMD, IMT: clinical tools or research toys?

Kullo and Malik. JACC 2007

Risk stratification

'A man is as old as his arteries'

Thomas Sydenham

Chronological or vascular age?

